
requests_toolbelt Documentation
Release 0.5.1

Ian Cordasco, Cory Benfield

December 16, 2015

Contents

1 Overview 3
1.1 requests toolbelt . 3
1.2 Contributing to this project . 4

2 Full Documentation 7
2.1 Transport Adapters . 7
2.2 Authentication . 11
2.3 Deprecated Requests Utilities . 14
2.4 Utilities for Downloading Streaming Reponses . 14
2.5 Utilities for Dumping Information About Reponses . 17
2.6 Utilities for Enhanced Form-Data Serialization . 18
2.7 Custom Toolbelt Exceptions . 19
2.8 Using requests with Threading . 19
2.9 Uploading Data . 24
2.10 User-Agent Constructor . 28

3 Indices and tables 31

Python Module Index 33

i

ii

requests_toolbelt Documentation, Release 0.5.1

This is a collection of utilities that some users of python-requests might need but do not belong in requests proper.
The library is actively maintained by members of the requests core development team, and so reflects the functionality
most requested by users of the requests library.

To get an overview of what the library contains, consult the user documentation.

Contents 1

requests_toolbelt Documentation, Release 0.5.1

2 Contents

CHAPTER 1

Overview

1.1 requests toolbelt

This is just a collection of utilities for python-requests, but don’t really belong in requests proper. The minimum
tested requests version is 2.1.0. In reality, the toolbelt should work with 2.0.1 as well, but some idiosyncracies
prevent effective or sane testing on that version.

1.1.1 multipart/form-data Encoder

The main attraction is a streaming multipart form-data object, MultipartEncoder. Its API looks like this:

from requests_toolbelt import MultipartEncoder
import requests

m = MultipartEncoder(
fields={'field0': 'value', 'field1': 'value',

'field2': ('filename', open('file.py', 'rb'), 'text/plain')}
)

r = requests.post('http://httpbin.org/post', data=m,
headers={'Content-Type': m.content_type})

You can also use multipart/form-data encoding for requests that don’t require files:

from requests_toolbelt import MultipartEncoder
import requests

m = MultipartEncoder(fields={'field0': 'value', 'field1': 'value'})

r = requests.post('http://httpbin.org/post', data=m,
headers={'Content-Type': m.content_type})

Or, you can just create the string and examine the data:

Assuming `m` is one of the above
m.to_string() # Always returns unicode

1.1.2 User-Agent constructor

You can easily construct a requests-style User-Agent string:

3

https://github.com/kennethreitz/requests

requests_toolbelt Documentation, Release 0.5.1

from requests_toolbelt import user_agent

headers = {
'User-Agent': user_agent('my_package', '0.0.1')
}

r = requests.get('https://api.github.com/users', headers=headers)

1.1.3 SSLAdapter

The SSLAdapter was originally published on Cory Benfield’s blog. This adapter allows the user to choose one of
the SSL protocols made available in Python’s ssl module for outgoing HTTPS connections:

from requests_toolbelt import SSLAdapter
import requests
import ssl

s = requests.Session()
s.mount('https://', SSLAdapter(ssl.PROTOCOL_TLSv1))

1.1.4 cookies/ForgetfulCookieJar

The ForgetfulCookieJar prevents a particular requests session from storing cookies:

from requests-toolbelt.cookies import ForgetfulCookieJar

session = requests.Session()
session.cookies = ForgetfulCookieJar()

1.1.5 Known Issues

On Python 3.3.0 and 3.3.1, the standard library’s http module will fail when passing an instance of the
MultipartEncoder. This is fixed in later minor releases of Python 3.3. Please consider upgrading to a later
minor version or Python 3.4. There is absolutely nothing this library can do to work around that bug.

1.1.6 Contributing

Please read the suggested workflow for contributing to this project.

1.2 Contributing to this project

1. All potential contributors must read the Contributor Code of Conduct and follow it

2. Fork the repository on GitHub or GitLab

3. Create a new branch, e.g., git checkout -b bug/12345

4. Fix the bug and add tests (if applicable)

5. Add yourself to the AUTHORS.rst

6. Commit it. While writing your commit message, follow these rules:

4 Chapter 1. Overview

https://lukasa.co.uk/2013/01/Choosing_SSL_Version_In_Requests/
https://toolbelt.readthedocs.org/en/latest/contributing.html
https://github.com/sigmavirus24/requests-toolbelt
https://gitlab.com/sigmavirus24/toolbelt

requests_toolbelt Documentation, Release 0.5.1

• Keep the subject line under 50 characters

• Use an imperative verb to start the commit

• Use an empty line between the subject and the message

• Describe the why in detail in the message portion of the commit

• Wrap the lines of the message at 72 characters

• Add the appropriate “Closes #12345” syntax to autoclose the issue it fixed

• See Example Commit Message below

7. Push it to your fork

8. Create either a request for us to merge your contribution

After this last step, it is possible that we may leave feedback in the form of review comments. When addressing these
comments, you can follow two strategies:

• Amend/rebase your changes into an existing commit

• Create a new commit and push it to your branch

This project is not opinionated about which approach you should prefer. We only ask that you are aware of the
following:

• Neither GitHub nor GitLab notifies us that you have pushed new changes. A friendly ping is welcome

• If you continue to use the same branch that you created the request from, both GitHub and GitLab will update
the request on the website. You do not need to create a new request for the new changes.

1.2.1 Contributor Code of Conduct

As contributors and maintainers of this project, we pledge to respect all people who contribute through reporting
issues, posting feature requests, updating documentation, submitting pull requests or patches, and other activities.

We are committed to making participation in this project a harassment-free experience for everyone, regardless of level
of experience, gender, gender identity and expression, sexual orientation, disability, personal appearance, body size,
race, ethnicity, age, or religion.

Examples of unacceptable behavior by participants include the use of sexual language or imagery, derogatory com-
ments or personal attacks, trolling, public or private harassment, insults, or other unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct. Project maintainers who do not follow the
Code of Conduct may be removed from the project team.

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by opening an issue or contacting
one or more of the project maintainers.

This Code of Conduct is adapted from the Contributor Covenant, version 1.0.0, available at http://contributor-
covenant.org/version/1/0/0/

1.2.2 Example Commit Message

Allow users to use the frob when uploading data

When uploading data with FooBar, users may need to use the frob method
to ensure that pieces of data are not munged.

1.2. Contributing to this project 5

http://contributor-covenant.org
http://contributor-covenant.org/version/1/0/0/
http://contributor-covenant.org/version/1/0/0/

requests_toolbelt Documentation, Release 0.5.1

Closes #1234567

6 Chapter 1. Overview

CHAPTER 2

Full Documentation

2.1 Transport Adapters

The toolbelt comes with several different transport adapters for you to use with requests. The transport adapters are
all kept in requests_toolbelt.adapters and include

• requests_toolbelt.adapters.fingerprint.FingerprintAdapter

• requests_toolbelt.adapters.socket_options.SocketOptionsAdapter

• requests_toolbelt.adapters.socket_options.TCPKeepAliveAdapter

• requests_toolbelt.adapters.source.SourceAddressAdapter

• requests_toolbelt.adapters.ssl.SSLAdapter

2.1.1 FingerprintAdapter

New in version 0.4.0.

By default, requests will validate a server’s certificate to ensure a connection is secure. In addition to this, the user can
provide a fingerprint of the certificate they’re expecting to receive. Unfortunately, the requests API does not support
this fairly rare use-case. When a user needs this extra validation, they should use the FingerprintAdapter class
to perform the validation.

class requests_toolbelt.adapters.fingerprint.FingerprintAdapter(fingerprint,
**kwargs)

A HTTPS Adapter for Python Requests that verifies certificate fingerprints, instead of certificate hostnames.

Example usage:

import requests
import ssl
from requests_toolbelt.adapters.fingerprint import FingerprintAdapter

twitter_fingerprint = '...'
s = requests.Session()
s.mount(

'https://twitter.com',
FingerprintAdapter(twitter_fingerprint)

)

The fingerprint should be provided as a hexadecimal string, optionally containing colons.

7

requests_toolbelt Documentation, Release 0.5.1

2.1.2 SSLAdapter

The SSLAdapter is the canonical implementation of the adapter proposed on Cory Benfield’s blog, here. This
adapter allows the user to choose one of the SSL/TLS protocols made available in Python’s ssl module for outgoing
HTTPS connections.

In principle, this shouldn’t be necessary: compliant SSL servers should be able to negotiate the required SSL version.
In practice there have been bugs in some versions of OpenSSL that mean that this negotiation doesn’t go as planned.
It can be useful to be able to simply plug in a Transport Adapter that can paste over the problem.

For example, suppose you’re having difficulty with the server that provides TLS for GitHub. You can work around it
by using the following code:

from requests_toolbelt.adapters.ssl import SSLAdapter

import requests
import ssl

s = requests.Session()
s.mount('https://github.com/', SSLAdapter(ssl.PROTOCOL_TLSv1))

Any future requests to GitHub made through that adapter will automatically attempt to negotiate TLSv1, and hopefully
will succeed.

class requests_toolbelt.adapters.ssl.SSLAdapter(ssl_version=None, **kwargs)
A HTTPS Adapter for Python Requests that allows the choice of the SSL/TLS version negotiated by Requests.
This can be used either to enforce the choice of high-security TLS versions (where supported), or to work around
misbehaving servers that fail to correctly negotiate the default TLS version being offered.

Example usage:

>>> import requests
>>> import ssl
>>> from requests_toolbelt import SSLAdapter
>>> s = requests.Session()
>>> s.mount('https://', SSLAdapter(ssl.PROTOCOL_TLSv1))

You can replace the chosen protocol with any that are available in the default Python SSL module. All subse-
quent requests that match the adapter prefix will use the chosen SSL version instead of the default.

2.1.3 SourceAddressAdapter

New in version 0.3.0.

The SourceAddressAdapter allows a user to specify a source address for their connnection.

class requests_toolbelt.adapters.source.SourceAddressAdapter(source_address,
**kwargs)

A Source Address Adapter for Python Requests that enables you to choose the local address to bind to. This
allows you to send your HTTP requests from a specific interface and IP address.

Two address formats are accepted. The first is a string: this will set the local IP address to the address given in
the string, and will also choose a semi-random high port for the local port number.

The second is a two-tuple of the form (ip address, port): for example, (’10.10.10.10’, 8999). This will
set the local IP address to the first element, and the local port to the second element. If 0 is used as the port
number, a semi-random high port will be selected.

8 Chapter 2. Full Documentation

https://lukasa.co.uk/2013/01/Choosing_SSL_Version_In_Requests/

requests_toolbelt Documentation, Release 0.5.1

Warning: Setting an explicit local port can have negative interactions with connection-pooling in Requests:
in particular, it risks the possibility of getting “Address in use” errors. The string-only argument is generally
preferred to the tuple-form.

Example usage:

import requests
from requests_toolbelt.adapters.source import SourceAddressAdapter

s = requests.Session()
s.mount('http://', SourceAddressAdapter('10.10.10.10'))
s.mount('https://', SourceAddressAdapter(('10.10.10.10', 8999))

2.1.4 SocketOptionsAdapter

New in version 0.4.0.

Note: This adapter will only work with requests 2.4.0 or newer. The ability to set arbitrary socket options does not
exist prior to requests 2.4.0.

The SocketOptionsAdapter allows a user to pass specific options to be set on created sockets when constructing
the Adapter without subclassing. The adapter takes advantage of urllib3‘s support for setting arbitrary socket
options for each urllib3.connection.HTTPConnection (and HTTPSConnection).

To pass socket options, you need to send a list of three-item tuples. For example, requests and urllib3 disable
Nagle’s Algorithm by default. If you need to re-enable it, you would do the following:

import socket
import requests
from requests_toolbelt.adapters.socket_options import SocketOptionsAdapter

nagles = [(socket.IPPROTO_TCP, socket.TCP_NODELAY, 0)]
session = requests.Session()
for scheme in session.adapters.keys():

session.mount(scheme, SocketOptionsAdapter(socket_options=nagles))

This would re-enable Nagle’s Algorithm for all http:// and https:// connections made with that session.

class requests_toolbelt.adapters.socket_options.SocketOptionsAdapter(**kwargs)
An adapter for requests that allows users to specify socket options.

Since version 2.4.0 of requests, it is possible to specify a custom list of socket options that need to be set before
establishing the connection.

Example usage:

>>> import socket
>>> import requests
>>> from requests_toolbelt.adapters import socket_options
>>> s = requests.Session()
>>> opts = [(socket.IPPROTO_TCP, socket.TCP_NODELAY, 0)]
>>> adapter = socket_options.SocketOptionsAdapter(socket_options=opts)
>>> s.mount('http://', adapter)

You can also take advantage of the list of default options on this class to keep using the original options in
addition to your custom options. In that case, opts might look like:

2.1. Transport Adapters 9

https://urllib3.readthedocs.org/en/latest/pools.html?highlight=socket_options#urllib3.connection.HTTPConnection.socket_options
https://en.wikipedia.org/wiki/Nagle%27s_algorithm

requests_toolbelt Documentation, Release 0.5.1

>>> opts = socket_options.SocketOptionsAdapter.default_options + opts

2.1.5 TCPKeepAliveAdapter

New in version 0.4.0.

Note: This adapter will only work with requests 2.4.0 or newer. The ability to set arbitrary socket options does not
exist prior to requests 2.4.0.

The TCPKeepAliveAdapter allows a user to pass specific keep-alive related options as keyword parameters as
well as arbitrary socket options.

Note: Different keep-alive related socket options may not be available for your platform. Check the socket module
for the availability of the following constants:

• socket.TCP_KEEPIDLE

• socket.TCP_KEEPCNT

• socket.TCP_KEEPINTVL

The adapter will silently ignore any option passed for a non-existent option.

An example usage of the adapter:

import requests
from requests_toolbelt.adapter.socket_options import TCPKeepAliveAdapter

session = requests.Session()
keep_alive = TCPKeepAliveAdapter(idle=120, count=20, interval=30)
session.mount('https://region-a.geo-1.compute.hpcloudsvc.com', keep_alive)
session.post('https://region-a.geo-1.compute.hpcloudsvc.com/v2/1234abcdef/servers',

...
)

In this case we know that creating a server on HP Public Cloud can cause requests to hang without using TCP Keep-
Alive. So we mount the adapter specifically for that domain, instead of adding it to every https:// and http://
request.

class requests_toolbelt.adapters.socket_options.TCPKeepAliveAdapter(**kwargs)
An adapter for requests that turns on TCP Keep-Alive by default.

The adapter sets 4 socket options:

•SOL_SOCKET SO_KEEPALIVE - This turns on TCP Keep-Alive

•IPPROTO_TCP TCP_KEEPINTVL 20 - Sets the keep alive interval

•IPPROTO_TCP TCP_KEEPCNT 5 - Sets the number of keep alive probes

•IPPROTO_TCP TCP_KEEPIDLE 60 - Sets the keep alive time if the socket library has the
TCP_KEEPIDLE constant

The latter three can be overridden by keyword arguments (respectively):

•idle

•interval

•count

10 Chapter 2. Full Documentation

requests_toolbelt Documentation, Release 0.5.1

You can use this adapter like so:

>>> from requests_toolbelt.adapters import socket_options
>>> tcp = socket_options.TCPKeepAliveAdapter(idle=120, interval=10)
>>> s = requests.Session()
>>> s.mount('http://', tcp)

2.2 Authentication

requests supports Basic Authentication and HTTP Digest Authentication by default. There are also a number of
third-party libraries for authentication with:

• OAuth

• NTLM

• Kerberos

The requests_toolbelt.auth provides extra authentication features in addition to those. It provides the fol-
lowing authentication classes:

• requests_toolbelt.auth.guess.GuessAuth

• requests_toolbelt.auth.http_proxy_digest.HTTPProxyDigestAuth

• requests_toolbelt.auth.handler.AuthHandler

2.2.1 AuthHandler

The AuthHandler is a way of using a single session with multiple websites that require authentication. If you know
what websites require a certain kind of authentication and what your credentials are.

Take for example a session that needs to authenticate to GitHub’s API and GitLab’s API, you would set up and use
your AuthHandler like so:

import requests
from requests_toolbelt.auth.handler import AuthHandler

def gitlab_auth(request):
request.headers['PRIVATE-TOKEN'] = 'asecrettoken'

handler = AuthHandler({
'https://api.github.com': ('sigmavirus24', 'apassword'),
'https://gitlab.com': gitlab_auth,

})

session = requests.Session()
session.auth = handler
r = session.get('https://api.github.com/user')
assert r.ok
r2 = session.get('https://gitlab.com/api/v3/projects')
assert r2.ok

Note: You must provide both the scheme and domain for authentication. The AuthHandler class will check both
the scheme and host to ensure your data is not accidentally exposed.

2.2. Authentication 11

https://requests-oauthlib.readthedocs.org/en/latest/
https://github.com/requests/requests-ntlm
https://github.com/requests/requests-kerberos

requests_toolbelt Documentation, Release 0.5.1

class requests_toolbelt.auth.handler.AuthHandler(strategies)
The AuthHandler object takes a dictionary of domains paired with authentication strategies and will use this
to determine which credentials to use when making a request. For example, you could do the following:

from requests import HTTPDigestAuth
from requests_toolbelt.auth.handler import AuthHandler

import requests

auth = AuthHandler({
'https://api.github.com': ('sigmavirus24', 'fakepassword'),
'https://example.com': HTTPDigestAuth('username', 'password')

})

r = requests.get('https://api.github.com/user', auth=auth)
=> <Response [200]>
r = requests.get('https://example.com/some/path', auth=auth)
=> <Response [200]>

s = requests.Session()
s.auth = auth
r = s.get('https://api.github.com/user')
=> <Response [200]>

Warning: requests.auth.HTTPDigestAuth is not yet thread-safe. If you use AuthHandler
across multiple threads you should instantiate a new AuthHandler for each thread with a new HTTPDiges-
tAuth instance for each thread.

add_strategy(domain, strategy)
Add a new domain and authentication strategy.

Parameters

• domain (str) – The domain you wish to match against. For example:
’https://api.github.com’

• strategy (str) – The authentication strategy you wish to use for
that domain. For example: (’username’, ’password’) or
requests.HTTPDigestAuth(’username’, ’password’)

a = AuthHandler({})
a.add_strategy('https://api.github.com', ('username', 'password'))

get_strategy_for(url)
Retrieve the authentication strategy for a specified URL.

Parameters url (str) – The full URL you will be making a request against. For example,
’https://api.github.com/user’

Returns Callable that adds authentication to a request.

import requests
a = AuthHandler({'example.com', ('foo', 'bar')})
strategy = a.get_strategy_for('http://example.com/example')
assert isinstance(strategy, requests.auth.HTTPBasicAuth)

remove_strategy(domain)
Remove the domain and strategy from the collection of strategies.

12 Chapter 2. Full Documentation

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

requests_toolbelt Documentation, Release 0.5.1

Parameters domain (str) – The domain you wish remove. For example,
’https://api.github.com’.

a = AuthHandler({'example.com', ('foo', 'bar')})
a.remove_strategy('example.com')
assert a.strategies == {}

2.2.2 GuessAuth

The GuessAuth authentication class automatically detects whether to use basic auth or digest auth:

import requests
from requests_toolbelt.auth import GuessAuth

requests.get('http://httpbin.org/basic-auth/user/passwd',
auth=GuessAuth('user', 'passwd'))

requests.get('http://httpbin.org/digest-auth/auth/user/passwd',
auth=GuessAuth('user', 'passwd'))

Detection of the auth type is done via the WWW-Authenticate header sent by the server. This requires an addi-
tional request in case of basic auth, as usually basic auth is sent preemptively. If the server didn’t explicitly require
authentication, no credentials are sent.

class requests_toolbelt.auth.guess.GuessAuth(username, password)
Guesses the auth type by the WWW-Authentication header.

2.2.3 HTTPProxyDigestAuth

The HTTPProxyDigestAuth use digest authentication between the client and the proxy.

import requests
from requests_toolbelt.auth.http_proxy_digest import HTTPProxyDigestAuth

proxies = {
"http": "http://PROXYSERVER:PROXYPORT",
"https": "https://PROXYSERVER:PROXYPORT",

}
url = "https://toolbelt.readthedocs.org/"
auth = HTTPProxyDigestAuth("USERNAME", "PASSWORD")
requests.get(url, proxies=proxies, auth=auth)

Program would raise error if the username or password is rejected by the proxy.

class requests_toolbelt.auth.http_proxy_digest.HTTPProxyDigestAuth(*args,
**kwargs)

HTTP digest authentication between proxy

Parameters stale_rejects (int) – The number of rejects indicate that: the client may wish to
simply retry the request with a new encrypted response, without reprompting the user for a new
username and password. i.e., retry build_digest_header

2.2. Authentication 13

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int

requests_toolbelt Documentation, Release 0.5.1

2.3 Deprecated Requests Utilities

Requests has decided to deprecate some utility functions in requests.utils. To ease users’ lives, they’ve been
moved to requests_toolbelt.utils.deprecated. A collection of functions deprecated in requests.utils.

requests_toolbelt.utils.deprecated.get_encodings_from_content(content)
Return encodings from given content string.

import requests
from requests_toolbelt.utils import deprecated

r = requests.get(url)
encodings = deprecated.get_encodings_from_content(r)

Parameters content (bytes) – bytestring to extract encodings from.

requests_toolbelt.utils.deprecated.get_unicode_from_response(response)
Return the requested content back in unicode.

This will first attempt to retrieve the encoding from the response headers. If that fails, it will use
requests_toolbelt.utils.deprecated.get_encodings_from_content() to determine en-
codings from HTML elements.

import requests
from requests_toolbelt.utils import deprecated

r = requests.get(url)
text = deprecated.get_unicode_from_response(r)

Parameters response (requests.models.Response) – Response object to get unicode content
from.

2.4 Utilities for Downloading Streaming Reponses

requests_toolbelt.downloadutils.stream.stream_response_to_file(response,
path=None)

Stream a response body to the specified file.

Either use the path provided or use the name provided in the Content-Disposition header.

Warning: If you pass this function an open file-like object as the path parameter, the function will not
close that file for you.

Warning: This function will not automatically close the response object passed in as the response
parameter.

If no path parameter is supplied, this function will parse the Content-Disposition header on the re-
sponse to determine the name of the file as reported by the server.

import requests
from requests_toolbelt import exceptions
from requests_toolbelt.downloadutils import stream

r = requests.get(url, stream=True)

14 Chapter 2. Full Documentation

https://github.com/kennethreitz/requests/issues/2266

requests_toolbelt Documentation, Release 0.5.1

try:
filename = stream.stream_response_to_file(r)

except exceptions.StreamingError as e:
The toolbelt could not find the filename in the
Content-Disposition
print(e.message)

You can also specify the filename as a string. This will be passed to the built-in open() and we will read the
content into the file.

import requests
from requests_toolbelt.downloadutils import stream

r = requests.get(url, stream=True)
filename = stream.stream_response_to_file(r, path='myfile')

Instead, if you want to manage the file object yourself, you need to provide either a io.BytesIO object or a
file opened with the ‘b’ flag. See the two examples below for more details.

import requests
from requests_toolbelt.downloadutils import stream

with open('myfile', 'wb') as fd:
r = requests.get(url, stream=True)
filename = stream.stream_response_to_file(r, path=fd)

print('{0} saved to {1}'.format(url, filename))

import io
import requests
from requests_toolbelt.downloadutils import stream

b = io.BytesIO()
r = requests.get(url, stream=True)
filename = stream.stream_response_to_file(r, path=b)
assert filename is None

Parameters

• response (requests.models.Response) – A Response object from requests

• path (str, or object with a write()) – (optional), Either a string with the path to the
location to save the response content, or a file-like object expecting bytes.

Returns The name of the file, if one can be determined, else None

Return type str

Raises requests_toolbelt.exceptions.StreamingError

requests_toolbelt.downloadutils.tee.tee(response, fileobject, chunksize=65536, de-
code_content=None)

Stream the response both to the generator and a file.

This will stream the response body while writing the bytes to fileobject.

Example usage:

resp = requests.get(url, stream=True)
with open('save_file', 'wb') as save_file:

2.4. Utilities for Downloading Streaming Reponses 15

http://docs.python.org/library/functions.html#open
http://docs.python.org/library/io.html#io.BytesIO
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

requests_toolbelt Documentation, Release 0.5.1

for chunk in tee(resp, save_file):
do stuff with chunk

import io

resp = requests.get(url, stream=True)
fileobject = io.BytesIO()

for chunk in tee(resp, fileobject):
do stuff with chunk

Parameters

• response (requests.Response) – Response from requests.

• fileobject (file, io.BytesIO) – Writable file-like object.

• chunksize (int) – (optional), Size of chunk to attempt to stream.

• decode_content (bool) – (optional), If True, this will decode the compressed content
of the response.

Raises TypeError if the fileobject wasn’t opened with the right mode or isn’t a BytesIO object.

requests_toolbelt.downloadutils.tee.tee_to_bytearray(response, bytearr,
chunksize=65536, de-
code_content=None)

Stream the response both to the generator and a bytearray.

This will stream the response provided to the function, add them to the provided bytearray and yield them
to the user.

Note: This uses the bytearray.extend() by default instead of passing the bytearray into the readinto
method.

Example usage:

b = bytearray()
resp = requests.get(url, stream=True)
for chunk in tee_to_bytearray(resp, b):

do stuff with chunk

Parameters

• response (requests.Response) – Response from requests.

• bytearr (bytearray) – Array to add the streamed bytes to.

• chunksize (int) – (optional), Size of chunk to attempt to stream.

• decode_content (bool) – (optional), If True, this will decode the compressed content
of the response.

requests_toolbelt.downloadutils.tee.tee_to_file(response, filename, chunksize=65536,
decode_content=None)

Stream the response both to the generator and a file.

This will open a file named filename and stream the response body while writing the bytes to the opened file
object.

Example usage:

16 Chapter 2. Full Documentation

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bytearray
http://docs.python.org/library/functions.html#bytearray
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool

requests_toolbelt Documentation, Release 0.5.1

resp = requests.get(url, stream=True)
for chunk in tee_to_file(resp, 'save_file'):

do stuff with chunk

Parameters

• response (requests.Response) – Response from requests.

• filename (str) – Name of file in which we write the response content.

• chunksize (int) – (optional), Size of chunk to attempt to stream.

• decode_content (bool) – (optional), If True, this will decode the compressed content
of the response.

2.5 Utilities for Dumping Information About Reponses

Occasionally, it is helpful to know almost exactly what data was sent to a server and what data was received. It can
also be challenging at times to gather all of that data from requests because of all of the different places you may need
to look to find it. In requests_toolbelt.utils.dump there are two functions that will return a bytearray
with the information retrieved from a response object.

requests_toolbelt.utils.dump.dump_all(response, request_prefix=’< ‘, response_prefix=’> ‘)
Dump all requests and responses including redirects.

This takes the response returned by requests and will dump all request-response pairs in the redirect history in
order followed by the final request-response.

Example:

import requests
from requests_toolbelt.utils import dump

resp = requests.get('https://httpbin.org/redirect/5')
data = dump.dump_all(resp)
print(data.decode('utf-8'))

Parameters

• response (requests.Response) – The response to format

• request_prefix (bytes) – (optional) Bytes to prefix each line of the request data

• response_prefix (bytes) – (optional) Bytes to prefix each line of the response data

Returns Formatted bytes of request and response information.

Return type bytearray

requests_toolbelt.utils.dump.dump_response(response, request_prefix=’< ‘, re-
sponse_prefix=’> ‘, data_array=None)

Dump a single request-response cycle’s information.

This will take a response object and dump only the data that requests can see for that single request-response
cycle.

Example:

2.5. Utilities for Dumping Information About Reponses 17

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bytearray
http://docs.python.org/library/functions.html#bytearray

requests_toolbelt Documentation, Release 0.5.1

import requests
from requests_toolbelt.utils import dump

resp = requests.get('https://api.github.com/users/sigmavirus24')
data = dump.dump_response(resp)
print(data.decode('utf-8'))

Parameters

• response (requests.Response) – The response to format

• request_prefix (bytes) – (optional) Bytes to prefix each line of the request data

• response_prefix (bytes) – (optional) Bytes to prefix each line of the response data

• data_array (bytearray) – (optional) Bytearray to which we append the request-
response cycle data

Returns Formatted bytes of request and response information.

Return type bytearray

2.6 Utilities for Enhanced Form-Data Serialization

requests_toolbelt.utils.formdata.urlencode(query, *args, **kwargs)
Handle nested form-data queries and serialize them appropriately.

There are times when a website expects a nested form data query to be sent but, the standard library’s urlencode
function does not appropriately handle the nested structures. In that case, you need this function which will
flatten the structure first and then properly encode it for you.

When using this to send data in the body of a request, make sure you specify the appropriate Content-Type
header for the request.

import requests
from requests_toolbelt.utils import formdata

query = {
'my_dict': {

'foo': 'bar',
'biz': 'baz",

},
'a': 'b',

}

resp = requests.get(url, params=formdata.urlencode(query))
or
resp = requests.post(

url,
data=formdata.urlencode(query),
headers={

'Content-Type': 'application/x-www-form-urlencoded'
},

)

Similarly, you can specify a list of nested tuples, e.g.,

18 Chapter 2. Full Documentation

http://docs.python.org/library/functions.html#bytearray
http://docs.python.org/library/functions.html#bytearray

requests_toolbelt Documentation, Release 0.5.1

import requests
from requests_toolbelt.utils import formdata

query = [
('my_list', [

('foo', 'bar'),
('biz', 'baz'),

]),
('a', 'b'),

]

resp = requests.get(url, params=formdata.urlencode(query))
or
resp = requests.post(

url,
data=formdata.urlencode(query),
headers={

'Content-Type': 'application/x-www-form-urlencoded'
},

)

For additional parameter and return information, see the official urlencode documentation.

2.7 Custom Toolbelt Exceptions

Below are the exception classes used by the toolbelt to provide error details to the user of the toolbelt. Collection of
exceptions raised by requests-toolbelt.

exception requests_toolbelt.exceptions.StreamingError
Used in requests_toolbelt.downloadutils.stream.

2.8 Using requests with Threading

New in version 0.4.0.

The toolbelt provides a simple API for using requests with threading.

A requests Session is documented as threadsafe but there are still a couple corner cases where it isn’t perfectly thread-
safe. The best way to use a Session is to use one per thread.

The implementation provided by the toolbelt is naïve. This means that we use one session per thread and we make no
effort to synchronize attributes (e.g., authentication, cookies, etc.). It also means that we make no attempt to direct a
request to a session that has already handled a request to the same domain. In other words, if you’re making requests
to multiple domains, the toolbelt’s Pool will not try to send requests to the same domain to the same thread.

This module provides three classes:

• Pool

• ThreadResponse

• ThreadException

In 98% of the situations you’ll want to just use a Pool and you’ll treat a ThreadResponse as if it were a regular
requests.Response.

Here’s an example:

2.7. Custom Toolbelt Exceptions 19

https://docs.python.org/3/library/urllib.parse.html#urllib.parse.urlencode

requests_toolbelt Documentation, Release 0.5.1

This example assumes Python 3
import queue
from requests_toolbelt.threaded import pool

jobs = queue.Queue()
urls = [

My list of URLs to get
]

for url in urls:
queue.put({'method': 'GET', 'url': url})

p = pool.Pool(job_queue=q)
p.join_all()

for response in p.responses():
print('GET {0}. Returned {1}.'.format(response.request_kwargs['url'],

response.status_code))

This is clearly a bit underwhelming. This is why there’s a short-cut class method to create a Pool from a list of URLs.

from requests_toolbelt.threaded import pool

urls = [
My list of URLs to get

]

p = pool.Pool.from_urls(urls)
p.join_all()

for response in p.responses():
print('GET {0}. Returned {1}.'.format(response.request_kwargs['url'],

response.status_code))

If one of the URLs in your list throws an exception, it will be accessible from the exceptions() generator.

from requests_toolbelt.threaded import pool

urls = [
My list of URLs to get

]

p = pool.Pool.from_urls(urls)
p.join_all()

for exc in p.exceptions():
print('GET {0}. Raised {1}.'.format(exc.request_kwargs['url'],

exc.message))

If instead, you want to retry the exceptions that have been raised you can do the following:

from requests_toolbelt.threaded import pool

urls = [
My list of URLs to get

]

p = pool.Pool.from_urls(urls)
p.join_all()

20 Chapter 2. Full Documentation

requests_toolbelt Documentation, Release 0.5.1

new_pool = pool.Pool.from_exceptions(p.exceptions())
new_pool.join_all()

Not all requests are advisable to retry without checking if they should be retried. You would normally check if you
want to retry it.

The Pool object takes 4 other keyword arguments:

• initializer

This is a callback that will initialize things on every session created. The callback must return the session.

• auth_generator

This is a callback that is called after the initializer callback has modified the session. This callback must also
return the session.

• num_processes

By passing a positive integer that indicates how many threads to use. It is None by default, and will use the
result of multiproccessing.cpu_count().

• session

You can pass an alternative constructor or any callable that returns a requests.Sesssion like object. It
will not be passed any arguments because a requests.Session does not accept any arguments.

Finally, if you don’t want to worry about Queue or Pool management, you can try the following:

from requests_toolbelt import threaded

requests = [{
'method': 'GET',
'url': 'https://httpbin.org/get',
...

}, {
...

}, {
...

}]

responses_generator, exceptions_generator = threaded.map(requests)
for response in responses_generator:

Do something

2.8.1 API and Module Auto-Generated Documentation

This module provides the API for requests_toolbelt.threaded.

The module provides a clean and simple API for making requests via a thread pool. The thread pool will use sessions
for increased performance.

A simple use-case is:

from requests_toolbelt import threaded

urls_to_get = [{
'url': 'https://api.github.com/users/sigmavirus24',
'method': 'GET',

}, {

2.8. Using requests with Threading 21

requests_toolbelt Documentation, Release 0.5.1

'url': 'https://api.github.com/repos/sigmavirus24/requests-toolbelt',
'method': 'GET',

}, {
'url': 'https://google.com',
'method': 'GET',

}]
responses, errors = threaded.map(urls_to_get)

By default, the threaded submodule will detect the number of CPUs your computer has and use that if no other number
of processes is selected. To change this, always use the keyword argument num_processes. Using the above
example, we would expand it like so:

responses, errors = threaded.map(urls_to_get, num_processes=10)

You can also customize how a requests.Session is initialized by creating a callback function:

from requests_toolbelt import user_agent

def initialize_session(session):
session.headers['User-Agent'] = user_agent('my-scraper', '0.1')
session.headers['Accept'] = 'application/json'

responses, errors = threaded.map(urls_to_get,
initializer=initialize_session)

requests_toolbelt.threaded.map(requests, **kwargs)
Simple interface to the threaded Pool object.

This function takes a list of dictionaries representing requests to make using Sessions in threads and returns a
tuple where the first item is a generator of successful responses and the second is a generator of exceptions.

Parameters

• requests (list) – Collection of dictionaries representing requests to make with the Pool
object.

• **kwargs – Keyword arguments that are passed to the Pool object.

Returns Tuple of responses and exceptions from the pool

Return type (ThreadResponse, ThreadException)

Inspiration is blatantly drawn from the standard library’s multiprocessing library. See the following references:

• multiprocessing’s pool source

• map and map_async inspiration

class requests_toolbelt.threaded.pool.Pool(job_queue, initializer=None,
auth_generator=None, num_processes=None,
session=<class ‘requests.sessions.Session’>)

Pool that manages the threads containing sessions.

Parameters

• queue (queue.Queue) – The queue you’re expected to use to which you should add items.

• initializer (collections.Callable) – Function used to initialize an instance of
session.

• auth_generator (collections.Callable) – Function used to generate new auth creden-
tials for the session.

• num_threads (int) – Number of threads to create.

22 Chapter 2. Full Documentation

http://docs.python.org/library/functions.html#list
https://hg.python.org/cpython/file/8ef4f75a8018/Lib/multiprocessing/pool.py
https://hg.python.org/cpython/file/8ef4f75a8018/Lib/multiprocessing/pool.py#l340
http://docs.python.org/library/collections.html#collections.Callable
http://docs.python.org/library/collections.html#collections.Callable
http://docs.python.org/library/functions.html#int

requests_toolbelt Documentation, Release 0.5.1

• session (requests.Session) –

exceptions()
Iterate over all the exceptions in the pool.

Returns Generator of ThreadException

classmethod from_exceptions(exceptions, **kwargs)
Create a Pool from an ThreadExceptions.

Provided an iterable that provides ThreadException objects, this classmethod will generate a new
pool to retry the requests that caused the exceptions.

Parameters

• exceptions (iterable) – Iterable that returns ThreadException

• kwargs – Keyword arguments passed to the Pool initializer.

Returns An initialized Pool object.

Return type Pool

classmethod from_urls(urls, request_kwargs=None, **kwargs)
Create a Pool from an iterable of URLs.

Parameters

• urls (iterable) – Iterable that returns URLs with which we create a pool.

• request_kwargs (dict) – Dictionary of other keyword arguments to provide to the
request method.

• kwargs – Keyword arguments passed to the Pool initializer.

Returns An initialized Pool object.

Return type Pool

get_exception()
Get an exception from the pool.

Return type ThreadException

get_response()
Get a response from the pool.

Return type ThreadResponse

join_all()
Join all the threads to the master thread.

responses()
Iterate over all the responses in the pool.

Returns Generator of ThreadResponse

class requests_toolbelt.threaded.pool.ThreadResponse(request_kwargs, response)
A wrapper around a requests Response object.

This will proxy most attribute access actions to the Response object. For example, if you wanted the parsed
JSON from the response, you might do:

thread_response = pool.get_response()
json = thread_response.json()

2.8. Using requests with Threading 23

http://docs.python.org/library/stdtypes.html#dict

requests_toolbelt Documentation, Release 0.5.1

request_kwargs = None
The original keyword arguments provided to the queue

response = None
The wrapped response

class requests_toolbelt.threaded.pool.ThreadException(request_kwargs, exception)
A wrapper around an exception raised during a request.

This will proxy most attribute access actions to the exception object. For example, if you wanted the message
from the exception, you might do:

thread_exc = pool.get_exception()
msg = thread_exc.message

exception = None
The captured and wrapped exception

request_kwargs = None
The original keyword arguments provided to the queue

2.9 Uploading Data

2.9.1 Streaming Multipart Data Encoder

Requests has support for multipart uploads, but the API means that using that functionality to build exactly the Multi-
part upload you want can be difficult or impossible. Additionally, when using Requests’ Multipart upload functionality
all the data must be read into memory before being sent to the server. In extreme cases, this can make it impossible to
send a file as part of a multipart/form-data upload.

The toolbelt contains a class that allows you to build multipart request bodies in exactly the format you need, and to
avoid reading files into memory. An example of how to use it is like this:

import requests
from requests_toolbelt.multipart.encoder import MultipartEncoder

m = MultipartEncoder(
fields={'field0': 'value', 'field1': 'value',

'field2': ('filename', open('file.py', 'rb'), 'text/plain')}
)

r = requests.post('http://httpbin.org/post', data=m,
headers={'Content-Type': m.content_type})

The MultipartEncoder has the .to_string() convenience method, as well. This method renders the multi-
part body into a string. This is useful when developing your code, allowing you to confirm that the multipart body has
the form you expect before you send it on.

The toolbelt also provides a way to monitor your streaming uploads with the MultipartEncoderMonitor.

class requests_toolbelt.multipart.encoder.MultipartEncoder(fields, boundary=None,
encoding=’utf-8’)

The MultipartEncoder oject is a generic interface to the engine that will create a
multipart/form-data body for you.

The basic usage is:

24 Chapter 2. Full Documentation

http://docs.python-requests.org/en/latest/user/quickstart/#post-a-multipart-encoded-file

requests_toolbelt Documentation, Release 0.5.1

import requests
from requests_toolbelt import MultipartEncoder

encoder = MultipartEncoder({'field': 'value',
'other_field', 'other_value'})

r = requests.post('https://httpbin.org/post', data=encoder,
headers={'Content-Type': encoder.content_type})

If you do not need to take advantage of streaming the post body, you can also do:

r = requests.post('https://httpbin.org/post',
data=encoder.to_string(),
headers={'Content-Type': encoder.content_type})

If you want the encoder to use a specific order, you can use an OrderedDict or more simply, a list of tuples:

encoder = MultipartEncoder([('field', 'value'),
('other_field', 'other_value')])

Changed in version 0.4.0.

You can also provide tuples as part values as you would provide them to requests’ files parameter.

encoder = MultipartEncoder({
'field': ('file_name', b'{"a": "b"}', 'application/json',

{'X-My-Header': 'my-value'})
])

Warning: This object will end up directly in httplib. Currently, httplib has a hard-coded read size
of 8192 bytes. This means that it will loop until the file has been read and your upload could take a while.
This is not a bug in requests. A feature is being considered for this object to allow you, the user, to specify
what size should be returned on a read. If you have opinions on this, please weigh in on this issue.

2.9.2 Monitoring Your Streaming Multipart Upload

If you need to stream your multipart/form-data upload then you’re probably in the situation where it might
take a while to upload the content. In these cases, it might make sense to be able to monitor the progress of the
upload. For this reason, the toolbelt provides the MultipartEncoderMonitor. The monitor wraps an instance
of a MultipartEncoder and is used exactly like the encoder. It provides a similar API with some additions:

• The monitor accepts a function as a callback. The function is called every time requests calls read on the
monitor and passes in the monitor as an argument.

• The monitor tracks how many bytes have been read in the course of the upload.

You might use the monitor to create a progress bar for the upload. Here is an example using clint which displays the
progress bar.

To use the monitor you would follow a pattern like this:

import requests
from requests_toolbelt.multipart import encoder

def my_callback(monitor):
Your callback function
pass

e = encoder.MultipartEncoder(

2.9. Uploading Data 25

http://docs.python.org/library/httplib.html#module-httplib
http://docs.python.org/library/httplib.html#module-httplib
https://github.com/sigmavirus24/requests-toolbelt/issues/75
https://gitlab.com/sigmavirus24/toolbelt/blob/master/examples/monitor/progress_bar.py

requests_toolbelt Documentation, Release 0.5.1

fields={'field0': 'value', 'field1': 'value',
'field2': ('filename', open('file.py', 'rb'), 'text/plain')}

)
m = encoder.MultipartEncoderMonitor(e, my_callback)

r = requests.post('http://httpbin.org/post', data=m,
headers={'Content-Type': m.content_type})

If you have a very simple use case you can also do:

import requests
from requests_toolbelt.multipart.encoder import MultipartEncoderMonitor

def my_callback(monitor):
Your callback function
pass

m = MultipartEncoderMonitor.from_fields(
fields={'field0': 'value', 'field1': 'value',

'field2': ('filename', open('file.py', 'rb'), 'text/plain')},
callback=my_callback
)

r = requests.post('http://httpbin.org/post', data=m,
headers={'Content-Type': m.content_type})

class requests_toolbelt.multipart.encoder.MultipartEncoderMonitor(encoder, call-
back=None)

An object used to monitor the progress of a MultipartEncoder.

The MultipartEncoder should only be responsible for preparing and streaming the data. For anyone who
wishes to monitor it, they shouldn’t be using that instance to manage that as well. Using this class, they can
monitor an encoder and register a callback. The callback receives the instance of the monitor.

To use this monitor, you construct your MultipartEncoder as you normally would.

from requests_toolbelt import (MultipartEncoder,
MultipartEncoderMonitor)

import requests

def callback(encoder, bytes_read):
Do something with this information
pass

m = MultipartEncoder(fields={'field0': 'value0'})
monitor = MultipartEncoderMonitor(m, callback)
headers = {'Content-Type': montior.content_type}
r = requests.post('https://httpbin.org/post', data=monitor,

headers=headers)

Alternatively, if your use case is very simple, you can use the following pattern.

from requests_toolbelt import MultipartEncoderMonitor
import requests

def callback(encoder, bytes_read):
Do something with this information
pass

monitor = MultipartEncoderMonitor.from_fields(

26 Chapter 2. Full Documentation

requests_toolbelt Documentation, Release 0.5.1

fields={'field0': 'value0'}, callback
)

headers = {'Content-Type': montior.content_type}
r = requests.post('https://httpbin.org/post', data=monitor,

headers=headers)

2.9.3 Streaming Data from a Generator

There are cases where you, the user, have a generator of some large quantity of data and you already know the size of
that data. If you pass the generator to requests via the data parameter, requests will assume that you want to
upload the data in chunks and set a Transfer-Encoding header value of chunked. Often times, this causes the
server to behave poorly. If you want to avoid this, you can use the StreamingIterator. You pass it the size of
the data and the generator.

import requests
from requests_toolbelt.streaming_iterator import StreamingIterator

generator = some_function() # Create your generator
size = some_function_size() # Get your generator's size
content_type = content_type() # Get the content-type of the data

streamer = StreamingIterator(size, generator)
r = requests.post('https://httpbin.org/post', data=streamer,

headers={'Content-Type': content_type})

The streamer will handle your generator for you and buffer the data before passing it to requests.

Changed in version 0.4.0: File-like objects can be passed instead of a generator.

If, for example, you need to upload data being piped into standard in, you might otherwise do:

import requests
import sys

r = requests.post(url, data=sys.stdin)

This would stream the data but would use a chunked transfer-encoding. If instead, you know the length of the
data that is being sent to stdin and you want to prevent the data from being uploaded in chunks, you can use
the StreamingIterator to stream the contents of the file without relying on chunking.

import requests
from requests_toolbelt.streaming_iterator import StreamingIterator
import sys

stream = StreamingIterator(size, sys.stdin)
r = requests.post(url, data=stream,

headers={'Content-Type': content_type})

class requests_toolbelt.streaming_iterator.StreamingIterator(size, iterator,
encoding=’utf-8’)

This class provides a way of allowing iterators with a known size to be streamed instead of chunked.

In requests, if you pass in an iterator it assumes you want to use chunked transfer-encoding to upload the data,
which not all servers support well. Additionally, you may want to set the content-length yourself to avoid this
but that will not work. The only way to preempt requests using a chunked transfer-encoding and forcing it to
stream the uploads is to mimic a very specific interace. Instead of having to know these details you can instead
just use this class. You simply provide the size and iterator and pass the instance of StreamingIterator to requests
via the data parameter like so:

2.9. Uploading Data 27

requests_toolbelt Documentation, Release 0.5.1

from requests_toolbelt import StreamingIterator

import requests

Let iterator be some generator that you already have and size be
the size of the data produced by the iterator

r = requests.post(url, data=StreamingIterator(size, iterator))

You can also pass file-like objects to StreamingIterator in case requests can’t determize the filesize itself.
This is the case with streaming file objects like stdin or any sockets. Wrapping e.g. files that are on disk with
StreamingIterator is unnecessary, because requests can determine the filesize itself.

Naturally, you should also set the Content-Type of your upload appropriately because the toolbelt will not
attempt to guess that for you.

2.10 User-Agent Constructor

Having well-formed user-agent strings is important for the proper functioning of the web. Make server administators
happy by generating yourself a nice user-agent string, just like Requests does! The output of the user-agent generator
looks like this:

>>> import requests_toolbelt
>>> requests_toolbelt.user_agent('mypackage', '0.0.1')
'mypackage/0.0.1 CPython/2.7.5 Darwin/13.0.0'

The Python type and version, and the platform type and version, will accurately reflect the system that your program
is running on. You can drop this easily into your program like this:

from requests_toolbelt import user_agent
from requests import Session

s = Session()
s.headers = {

'User-Agent': user_agent('my_package', '0.0.1')
}

r = s.get('https://api.github.com/users')

This will override the default Requests user-agent string for all of your HTTP requests, replacing it with your own.

2.10.1 Adding Extra Information to Your User-Agent String

New in version 0.5.0.

If you feel it necessary, you can also include versions for other things that your client is using. For example if you were
building a package and wanted to include the package name and version number as well as the version of requests and
requests-toolbelt you were using you could do the following:

import requests
import requests_toolbelt
from requests_toolbelt.utils.user_agent import user_agent as ua

user_agent = ua.user_agent('mypackage', '0.0.1',
extras=[('requests', requests.__version__),

28 Chapter 2. Full Documentation

requests_toolbelt Documentation, Release 0.5.1

('requests-toolbelt', requests_toolbelt.__version__)])

s = requests.Session()
s.headers['User-Agent'] = user_agent

Your user agent will now look like:

mypackage/0.0.1 requests/2.7.0 requests-toolbelt/0.5.0 CPython/2.7.10 Darwin/13.0.0

2.10. User-Agent Constructor 29

requests_toolbelt Documentation, Release 0.5.1

30 Chapter 2. Full Documentation

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

31

requests_toolbelt Documentation, Release 0.5.1

32 Chapter 3. Indices and tables

Python Module Index

r
requests_toolbelt.exceptions, 19
requests_toolbelt.threaded, 21
requests_toolbelt.utils.deprecated, 14

33

requests_toolbelt Documentation, Release 0.5.1

34 Python Module Index

Index

A
add_strategy() (requests_toolbelt.auth.handler.AuthHandler

method), 12
AuthHandler (class in requests_toolbelt.auth.handler), 11

D
dump_all() (in module requests_toolbelt.utils.dump), 17
dump_response() (in module re-

quests_toolbelt.utils.dump), 17

E
exception (requests_toolbelt.threaded.pool.ThreadException

attribute), 24
exceptions() (requests_toolbelt.threaded.pool.Pool

method), 23

F
FingerprintAdapter (class in re-

quests_toolbelt.adapters.fingerprint), 7
from_exceptions() (requests_toolbelt.threaded.pool.Pool

class method), 23
from_urls() (requests_toolbelt.threaded.pool.Pool class

method), 23

G
get_encodings_from_content() (in module re-

quests_toolbelt.utils.deprecated), 14
get_exception() (requests_toolbelt.threaded.pool.Pool

method), 23
get_response() (requests_toolbelt.threaded.pool.Pool

method), 23
get_strategy_for() (requests_toolbelt.auth.handler.AuthHandler

method), 12
get_unicode_from_response() (in module re-

quests_toolbelt.utils.deprecated), 14
GuessAuth (class in requests_toolbelt.auth.guess), 13

H
HTTPProxyDigestAuth (class in re-

quests_toolbelt.auth.http_proxy_digest),
13

J
join_all() (requests_toolbelt.threaded.pool.Pool method),

23

M
map() (in module requests_toolbelt.threaded), 22
MultipartEncoder (class in re-

quests_toolbelt.multipart.encoder), 24
MultipartEncoderMonitor (class in re-

quests_toolbelt.multipart.encoder), 26

P
Pool (class in requests_toolbelt.threaded.pool), 22

R
remove_strategy() (requests_toolbelt.auth.handler.AuthHandler

method), 12
request_kwargs (requests_toolbelt.threaded.pool.ThreadException

attribute), 24
request_kwargs (requests_toolbelt.threaded.pool.ThreadResponse

attribute), 23
requests_toolbelt.exceptions (module), 19
requests_toolbelt.threaded (module), 21
requests_toolbelt.utils.deprecated (module), 14
response (requests_toolbelt.threaded.pool.ThreadResponse

attribute), 24
responses() (requests_toolbelt.threaded.pool.Pool

method), 23

S
SocketOptionsAdapter (class in re-

quests_toolbelt.adapters.socket_options),
9

SourceAddressAdapter (class in re-
quests_toolbelt.adapters.source), 8

SSLAdapter (class in requests_toolbelt.adapters.ssl), 8
stream_response_to_file() (in module re-

quests_toolbelt.downloadutils.stream), 14
StreamingError, 19

35

requests_toolbelt Documentation, Release 0.5.1

StreamingIterator (class in re-
quests_toolbelt.streaming_iterator), 27

T
TCPKeepAliveAdapter (class in re-

quests_toolbelt.adapters.socket_options),
10

tee() (in module requests_toolbelt.downloadutils.tee), 15
tee_to_bytearray() (in module re-

quests_toolbelt.downloadutils.tee), 16
tee_to_file() (in module re-

quests_toolbelt.downloadutils.tee), 16
ThreadException (class in re-

quests_toolbelt.threaded.pool), 24
ThreadResponse (class in re-

quests_toolbelt.threaded.pool), 23

U
urlencode() (in module requests_toolbelt.utils.formdata),

18

36 Index

	Overview
	requests toolbelt
	Contributing to this project

	Full Documentation
	Transport Adapters
	Authentication
	Deprecated Requests Utilities
	Utilities for Downloading Streaming Reponses
	Utilities for Dumping Information About Reponses
	Utilities for Enhanced Form-Data Serialization
	Custom Toolbelt Exceptions
	Using requests with Threading
	Uploading Data
	User-Agent Constructor

	Indices and tables
	Python Module Index

