requests toolbelt Documentation
Release 0.4.0

lan Cordasco, Cory Benfield

April 03, 2015

Contents

1 Overview 3
1.1 requeststoolbelt e 3
2 Full Documentation 5
2.1 Transport Adapters e e e e e 5
2.2 Authentication oL e e e e e e e e e 8
2.3 Deprecated Requests Utilities o o i i e e e e e 11
2.4 Utilities for Downloading Streaming Reponses, 12
2.5 Custom Toolbelt Exceptions e 13
2.6 Usingrequests with Threading 13
27 Uploading Data. o e e 16
2.8 User-Agent CONSIIUCIOT v v v v v i e 20
3 Indices and tables 23
Python Module Index 25

requests_toolbelt Documentation, Release 0.4.0

This is a collection of utilities that some users of python-requests might need but do not belong in requests proper.
The library is actively maintained by members of the requests core development team, and so reflects the functionality
most requested by users of the requests library.

To get an overview of what the library contains, consult the user documentation.

Contents 1

requests_toolbelt Documentation, Release 0.4.0

2 Contents

CHAPTER 1

Overview

1.1 requests toolbelt

This is just a collection of utilities for python-requests, but don’t really belong in requests proper. The minimum
tested requests version is 2. 1. 0. In reality, the toolbelt should work with 2. 0.1 as well, but some idiosyncracies
prevent effective or sane testing on that version.

1.1.1 multipart/form-data Encoder

The main attraction is a streaming multipart form-data object, Mult ipartEncoder. Its API looks like this:

from requests_toolbelt import MultipartEncoder
import requests

m = MultipartEncoder (
fields={’field0’: ’'value’, ’'fieldl’: ’"value’,
"field2’: (’'filename’, open(’file.py’, 'rb’), ’'text/plain’)}

r = requests.post ('http://httpbin.org/post’, data=m,
headers={’Content-Type’ : m.content_type})

You can also use multipart/form-data encoding for requests that don’t require files:

from requests_toolbelt import MultipartEncoder
import requests

m = MultipartEncoder (fields={’field0’: 'value’, ’'fieldl’: ’"value’})

requests.post (' http://httpbin.org/post’, data=m,
headers={’Content-Type’ : m.content_type})

-
Il

Or, you can just create the string and examine the data:

Assuming 'm' is one of the above
m.to_string() # Always returns unicode

1.1.2 User-Agent constructor

You can easily construct a requests-style User—Agent string:

https://github.com/kennethreitz/requests

requests_toolbelt Documentation, Release 0.4.0

from requests_toolbelt import user_agent

headers = {
"User—-Agent’: user_agent ('my_package’, "70.0.1")

}

r = requests.get ('https://api.github.com/users’, headers=headers)

1.1.3 SSLAdapter

The SSLAdapter was originally published on Cory Benfield’s blog. This adapter allows the user to choose one of
the SSL protocols made available in Python’s ss1 module for outgoing HTTPS connections:

from requests_toolbelt import SSLAdapter
import requests
import ssl

s = requests.Session()
s.mount ("https://’, SSLAdapter (ssl.PROTOCOL_TLSv1))

1.1.4 Known Issues

On Python 3.3.0 and 3.3.1, the standard library’s http module will fail when passing an instance of the
MultipartEncoder. This is fixed in later minor releases of Python 3.3. Please consider upgrading to a later
minor version or Python 3.4. There is absolutely nothing this library can do to work around that bug.

4 Chapter 1. Overview

https://lukasa.co.uk/2013/01/Choosing_SSL_Version_In_Requests/

CHAPTER 2

Full Documentation

2.1

Transport Adapters

The toolbelt comes with several different transport adapters for you to use with requests. The transport adapters are
all kept in requests_toolbelt.adapters and include

requests_toolbelt.adapters.fingerprint.FingerprintAdapter
requests_toolbelt.adapters.socket_options.SocketOptionsAdapter
requests_toolbelt.adapters.socket_options.TCPKeepAliveAdapter
requests_toolbelt.adapters.source.SourceAddressAdapter

requests_toolbelt.adapters.ssl.SSLAdapter

2.1.1 FingerprintAdapter

New in version 0.4.0.

By default, requests will validate a server’s certificate to ensure a connection is secure. In addition to this, the user can
provide a fingerprint of the certificate they’re expecting to receive. Unfortunately, the requests API does not support
this fairly rare use-case. When a user needs this extra validation, they should use the FingerprintAdapter class
to perform the validation.

class requests_toolbelt.adapters.fingerprint.FingerprintAdapter (fingerprint,

**kwargs)
A HTTPS Adapter for Python Requests that verifies certificate fingerprints, instead of certificate hostnames.

Example usage:

import requests
import ssl
from requests_toolbelt.adapters.fingerprint import FingerprintAdapter

twitter_fingerprint = ...’
s = requests.Session|()
s.mount (
"https://twitter.com’,
FingerprintAdapter (twitter_fingerprint)
)

The fingerprint should be provided as a hexadecimal string, optionally containing colons.

requests_toolbelt Documentation, Release 0.4.0

2.1.2 SSLAdapter

The SSLAdapter is the canonical implementation of the adapter proposed on Cory Benfield’s blog, here. This
adapter allows the user to choose one of the SSL/TLS protocols made available in Python’s ss1 module for outgoing
HTTPS connections.

In principle, this shouldn’t be necessary: compliant SSL servers should be able to negotiate the required SSL version.
In practice there have been bugs in some versions of OpenSSL that mean that this negotiation doesn’t go as planned.
It can be useful to be able to simply plug in a Transport Adapter that can paste over the problem.

For example, suppose you’re having difficulty with the server that provides TLS for GitHub. You can work around it
by using the following code:

from requests_toolbelt.adapters.ssl import SSLAdapter

import requests
import ssl

s = requests.Session()
s.mount (" https://github.com/’, SSLAdapter (ssl.PROTOCOL_TLSv1))

Any future requests to GitHub made through that adapter will automatically attempt to negotiate TLSv1, and hopefully
will succeed.

class requests_toolbelt.adapters.ssl.SSLAdapter (ssl_version=None, **kwargs)
A HTTPS Adapter for Python Requests that allows the choice of the SSL/TLS version negotiated by Requests.
This can be used either to enforce the choice of high-security TLS versions (where supported), or to work around
misbehaving servers that fail to correctly negotiate the default TLS version being offered.

Example usage:

>>> import requests

>>> import ssl

>>> from requests_toolbelt import SSLAdapter

>>> s = requests.Session|()

>>> s.mount ("https://’, SSLAdapter (ssl.PROTOCOL_TLSv1))

You can replace the chosen protocol with any that are available in the default Python SSL module. All subse-
quent requests that match the adapter prefix will use the chosen SSL version instead of the default.

2.1.3 SourceAddressAdapter

New in version 0.3.0.
The SourceAddressAdapter allows a user to specify a source address for their connnection.

class requests_toolbelt.adapters.source.SourceAddressAdapter (source_address,

*tkwargs)
A Source Address Adapter for Python Requests that enables you to choose the local address to bind to. This
allows you to send your HTTP requests from a specific interface and IP address.

Example usage:

import requests
from requests_toolbelt.adapters.source import SourceAddressAdapter

s = requests.Session|()
s.mount (" http://’, SourceAddressAdapter (’10.10.10.10"))

6 Chapter 2. Full Documentation

https://lukasa.co.uk/2013/01/Choosing_SSL_Version_In_Requests/

requests_toolbelt Documentation, Release 0.4.0

2.1.4 SocketOptionsAdapter

New in version 0.4.0.

Note: This adapter will only work with requests 2.4.0 or newer. The ability to set arbitrary socket options does not
exist prior to requests 2.4.0.

The SocketOptionsAdapter allows a user to pass specific options to be set on created sockets when constructing
the Adapter without subclassing. The adapter takes advantage of ur11ib3‘s support for setting arbitrary socket
options for each ur11ib3.connection.HTTPConnection (and HTTPSConnection).

To pass socket options, you need to send a list of three-item tuples. For example, requests and ur11ib3 disable
Nagle’s Algorithm by default. If you need to re-enable it, you would do the following:

import socket
import requests
from requests_toolbelt.adapters.socket_options import SocketOptionsAdapter

nagles = [(socket.IPPROTO_TCP, socket.TCP_NODELAY, 0)]
session = requests.Session()
for scheme in session.adapters.keys():
session.mount (scheme, SocketOptionsAdapter (socket_options=nagles))

This would re-enable Nagle’s Algorithm for all http:// and https:// connections made with that session.

class requests_toolbelt.adapters.socket_options.SocketOptionsAdapter (**kwargs)
An adapter for requests that allows users to specify socket options.

Since version 2.4.0 of requests, it is possible to specify a custom list of socket options that need to be set before
establishing the connection.

Example usage:

>>> import socket
>>> import requests
>>> from requests_toolbelt.adapters import socket_options

>>> s = requests.Session|()
>>> opts = [(socket.IPPROTO_TCP, socket.TCP_NODELAY, 0)]
>>> adapter = socket_options.SocketOptionsAdapter (socket_options=opts)

>>> s.mount (' http://’, adapter)

You can also take advantage of the list of default options on this class to keep using the original options in
addition to your custom options. In that case, opt s might look like:

>>> opts = socket_options.SocketOptionsAdapter.default_options + opts

2.1.5 TCPKeepAliveAdapter

New in version 0.4.0.

Note: This adapter will only work with requests 2.4.0 or newer. The ability to set arbitrary socket options does not
exist prior to requests 2.4.0.

The TCPKeepAliveAdapter allows a user to pass specific keep-alive related options as keyword parameters as
well as arbitrary socket options.

Note: Different keep-alive related socket options may not be available for your platform. Check the socket module

2.1. Transport Adapters 7

https://urllib3.readthedocs.org/en/latest/pools.html?highlight=socket_options#urllib3.connection.HTTPConnection.socket_options
https://en.wikipedia.org/wiki/Nagle%27s_algorithm

requests_toolbelt Documentation, Release 0.4.0

for the availability of the following constants:
* socket .TCP_KEEPIDLE
* socket .TCP_KEEPCNT
* socket.TCP_KEEPINTVL

The adapter will silently ignore any option passed for a non-existent option.

An example usage of the adapter:

import requests
from requests_toolbelt.adapter.socket_options import TCPKeepAliveAdapter

session = requests.Session()
keep_alive = TCPKeepAliveAdapter (idle=120, count=20, interval=30)
session.mount (" https://region-a.geo-1.compute.hpcloudsvc.com’, keep_alive)
session.post (' https://region-a.geo-1.compute.hpcloudsvc.com/v2/1234abcdef/servers’,
#
)

In this case we know that creating a server on HP Public Cloud can cause requests to hang without using TCP Keep-
Alive. So we mount the adapter specifically for that domain, instead of adding it to every https:// and http://
request.

class requests_toolbelt.adapters.socket_options.TCPKeepAliveAdapter (**kwargs)
An adapter for requests that turns on TCP Keep-Alive by default.

The adapter sets 4 socket options:
*SOL_SOCKET SO_KEEPALIVE - This turns on TCP Keep-Alive
*IPPROTO_TCP TCP_KEEPINTVL 20 - Sets the keep alive interval
*IPPROTO_TCP TCP_KEEPCNT 5 - Sets the number of keep alive probes

*IPPROTO_TCP TCP_KEEPIDLE 60 - Sets the keep alive time if the socket library has the
TCP_KEEPIDLE constant

The latter three can be overridden by keyword arguments (respectively):
eidle
einterval
ecount

You can use this adapter like so:

>>> from requests_toolbelt.adapters import socket_options

>>> tcp = socket_options.TCPKeepAliveAdapter (idle=120, interval=10)
>>> s = requests.Session|()

>>> s.mount (" http://’, tcp)

2.2 Authentication

requests supports Basic Authentication and HTTP Digest Authentication by default. There are also a number of
third-party libraries for authentication with:

¢ OAuth

8 Chapter 2. Full Documentation

https://requests-oauthlib.readthedocs.org/en/latest/

requests_toolbelt Documentation, Release 0.4.0

* NTLM
¢ Kerberos

The requests_toolbelt.auth provides extra authentication features in addition to those. It provides the fol-
lowing authentication classes:

e requests_toolbelt.auth.guess.GuessAuth
e requests_toolbelt.auth.http_proxy_digest.HTTPProxyDigestAuth

* requests_toolbelt.auth.handler.AuthHandler

2.2.1 AuthHandler

The AuthHandler is a way of using a single session with multiple websites that require authentication. If you know
what websites require a certain kind of authentication and what your credentials are.

Take for example a session that needs to authenticate to GitHub’s API and GitLab’s API, you would set up and use
your AuthHandler like so:

import requests
from requests_toolbelt.auth.handler import AuthHandler

def gitlab_auth (request) :
request.headers [’ PRIVATE-TOKEN’] = ’asecrettoken’

handler = AuthHandler ({
"https://api.github.com’: (’sigmavirus24’, ’apassword’),
"https://gitlab.com’: gitlab_auth,

1)

session = requests.Session/()

session.auth = handler

r = session.get (’https://api.github.com/user’)

assert r.ok

r2 = session.get ('https://gitlab.com/api/v3/projects’)
assert r2.ok

Note: You must provide both the scheme and domain for authentication. The Aut hHandler class will check both
the scheme and host to ensure your data is not accidentally exposed.

class requests_toolbelt.auth.handler.AuthHandler (strategies)
The AuthHandler object takes a dictionary of domains paired with authentication strategies and will use this
to determine which credentials to use when making a request. For example, you could do the following:

from requests import HTTPDigestAuth
from requests_toolbelt.auth.handler import AuthHandler

import requests

auth = AuthHandler ({
"https://api.github.com’: (’sigmavirus24’, ' fakepassword’),
"https://example.com’ : HTTPDigestAuth ('username’, ’password’)
})

r = requests.get ('https://api.github.com/user’, auth=auth)
=> <Response [200]>
r = requests.get ('https://example.com/some/path’, auth=auth)

2.2. Authentication 9

https://github.com/requests/request-ntlm
https://github.com/requests/requests-kerberos

requests_toolbelt Documentation, Release 0.4.0

=> <Response [200]>

= requests.Session()

.auth = auth

= s.get ('https://api.github.com/user’)
=> <Response [200]>

H= B 0O n

Warning: requests.auth.HTTPDigestAuth is not yet thread-safe. If you use AuthHandler
across multiple threads you should instantiate a new AuthHandler for each thread with a new HTTPDiges-
tAuth instance for each thread.

add_strategy (domain, strategy)
Add a new domain and authentication strategy.

Parameters

* domain (szr) — The domain you wish to match against. For example:
"https://api.github.com’

e strategy (str) — The authentication strategy you wish to use for
that domain. For example: ("username’, ’'password’) or
requests.HTTPDigestAuth (' username’, ’'password’)

a = AuthHandler ({})

a.add_strategy (' https://api.github.com’, (’username’, ’'password’))
get_strategy_ for (url)

Retrieve the authentication strategy for a specified URL.

Parameters url (st7) — The full URL you will be making a request against. For example,
"https://api.github.com/user’

Returns Callable that adds authentication to a request.

import requests

a = AuthHandler ({’example.com’, (’'foo’, ’'bar’)})

strategy = a.get_strategy_for (' http://example.com/example’)
assert isinstance(strategy, requests.auth.HTTPBasicAuth)

remove_strategy (domain)
Remove the domain and strategy from the collection of strategies.

Parameters domain (szr) — The domain you wish remove. For example,
"https://api.github.com’.

a = AuthHandler ({’example.com’, (’"foo’, ’'bar’)})
a.remove_strategy (' example.com’)
assert a.strategies == {}

2.2.2 GuessAuth

The GuessAuth authentication class automatically detects whether to use basic auth or digest auth:

import requests
from requests_toolbelt.auth import GuessAuth

requests.get (' http://httpbin.org/basic-auth/user/passwd’,
auth=GuessAuth (' user’, ’'passwd’))

10 Chapter 2. Full Documentation

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

requests_toolbelt Documentation, Release 0.4.0

requests.get (' http://httpbin.org/digest—-auth/auth/user/passwd’,
auth=GuessAuth (" user’, ’"passwd’))

Detection of the auth type is done via the WWW—Authenticate header sent by the server. This requires an addi-
tional request in case of basic auth, as usually basic auth is sent preemptively. If the server didn’t explicitly require

authentication, no credentials are sent.

class requests_toolbelt.auth.guess.GuessAuth (username, password)
Guesses the auth type by the WWW-Authentication header.

2.2.3 HTTPProxyDigestAuth

The HTTPProxyDigestAuth use digest authentication between the client and the proxy.

import requests
from requests_toolbelt.auth.http_proxy digest import HTTPProxyDigestAuth

proxies = {
"http": "http://PROXYSERVER:PROXYPORT",
"https": "https://PROXYSERVER:PROXYPORT",
}
url = "https://toolbelt.readthedocs.org/"

auth = HTTPProxyDigestAuth ("USERNAME", "PASSWORD")
requests.get (url, proxies=proxies, auth=auth)

Program would raise error if the username or password is rejected by the proxy.

class requests_toolbelt.auth.http_proxy_digest .HTTPProxyDigestAuth (*args,
*rkwargs)
HTTP digest authentication between proxy

Parameters stale_rejects (int) — The number of rejects indicate that: the client may wish to sim-
ply retry the request with a new encrypted response, without reprompting the user for a new
username and password. i.e., retry build_digest_header

2.3 Deprecated Requests Utilities

Requests has decided to deprecate some utility functions in requests.utils. To ease users’ lives, they’ve been
moved to requests_toolbelt.utils.deprecated. A collection of functions deprecated in requests.utils.

requests_toolbelt.utils.deprecated.get_encodings_from content (content)
Return encodings from given content string.

import requests
from requests_toolbelt.utils import deprecated

r = requests.get (url)
encodings = deprecated.get_encodings_from_content (r)

Parameters content (byfes) — bytestring to extract encodings from.

requests_toolbelt.utils.deprecated.get_unicode_from response (response)
Return the requested content back in unicode.

2.3. Deprecated Requests Utilities

11

http://docs.python.org/library/functions.html#int
https://github.com/kennethreitz/requests/issues/2266

requests_toolbelt Documentation, Release 0.4.0

This will first attempt to retrieve the encoding from the response headers. If that fails, it will use
requests_toolbelt.utils.deprecated.get_encodings_from_content () todetermine en-
codings from HTML elements.

import requests
from requests_toolbelt.utils import deprecated

r = requests.get (url)
text = deprecated.get_unicode_from_response(r)

Parameters response (requests.models.Response) — Response object to get unicode content from.

2.4 Utilities for Downloading Streaming Reponses

requests_toolbelt.downloadutils.stream.stream response_to_file (response,

path=None)
Stream a response body to the specified file.

Either use the path provided or use the name provided in the Content-Disposition header.

Warning: If you pass this function an open file-like object as the path parameter, the function will not
close that file for you.

Warning: This function will not automatically close the response object passed in as the response
parameter.

If no path parameter is supplied, this function will parse the Content-Disposition header on the re-
sponse to determine the name of the file as reported by the server.

import requests
from requests_toolbelt import exceptions
from requests_toolbelt.downloadutils import stream

r
try:

filename = stream.stream_response_to_file (r)
except exceptions.StreamingError as e:

The toolbelt could not find the filename in the

Content-Disposition

print (e.message)

requests.get (url, stream=True)

You can also specify the filename as a string. This will be passed to the built-in open () and we will read the
content into the file.

import requests
from requests_toolbelt.downloadutils import stream

r = requests.get (url, stream=True)
filename = stream.stream_response_to_file(r, path="myfile’)

Instead, if you want to manage the file object yourself, you need to provide either a io.BytesIO object or a
file opened with the ‘b’ flag. See the two examples below for more details.

import requests
from requests_toolbelt.downloadutils import stream

12

Chapter 2. Full Documentation

http://docs.python.org/library/functions.html#open
http://docs.python.org/library/io.html#io.BytesIO

requests_toolbelt Documentation, Release 0.4.0

with open('myfile’, ’"wb’) as fd:
r = requests.get (url, stream=True)
filename = stream.stream_response_to_file(r, path=£fd)

print (' {0} saved to {1}’ .format (url, filename))

import io
import requests
from requests_toolbelt.downloadutils import stream

b = i0.BytesIO()

r = requests.get (url, stream=True)

filename = stream.stream_response_to_file(r, path=b)
assert filename is None

Parameters
* response (requests.models.Response) — A Response object from requests

* path (str, or object with a write ()) — (optional), Either a string with the path to the
location to save the response content, or a file-like object expecting bytes.

Returns The name of the file, if one can be determined, else None
Return type str

Raises requests_toolbelt.exceptions.StreamingError

2.5 Custom Toolbelt Exceptions

Below are the exception classes used by the toolbelt to provide error details to the user of the toolbelt. Collection of
exceptions raised by requests-toolbelt.

exception requests_toolbelt.exceptions.StreamingError
Used in requests_toolbelt.downloadutils.stream.

2.6 Using requests with Threading

New in version 0.4.0.
The toolbelt provides a simple API for using requests with threading.

A requests Session is documented as threadsafe but there are still a couple corner cases where it isn’t perfectly thread-
safe. The best way to use a Session is to use one per thread.

The implementation provided by the toolbelt is naive. This means that we use one session per thread and we make no
effort to synchronize attributes (e.g., authentication, cookies, etc.). It also means that we make no attempt to direct a
request to a session that has already handled a request to the same domain. In other words, if you’re making requests
to multiple domains, the toolbelt’s Pool will not try to send requests to the same domain to the same thread.

This module provides three classes:
* Pool
* ThreadResponse

* ThreadException

2.5. Custom Toolbelt Exceptions 13

http://docs.python.org/library/functions.html#str

requests_toolbelt Documentation, Release 0.4.0

In 98% of the situations you’ll want to just use a Pool and you’ll treat a ThreadResponse as if it were a regular
requests.Response.

Here’s an example:

This example assumes Python 3
import queue
from requests_toolbelt.threaded import pool

jobs = queue.Queue ()
urls = [
My list of URLs to get

for url in urls:
queue.put ({'method’” : "GET’, ’"url’: url})

p = pool.Pool (job_qgueue=q)
p-Jjoin_all ()

for response in p.responses|():
print ('GET {0}. Returned {1}.’.format (response.request_kwargs[’url’],
response.status_code))

This is clearly a bit underwhelming. This is why there’s a short-cut class method to create a Poo1 from a list of URLs.

from requests_toolbelt.threaded import pool

urls = [
My list of URLs to get

p = pool.Pool.from_ urls (urls)
p-join_all()

for response in p.responses():
print ('GET {0}. Returned {1}.’.format (response.request_kwargs[’url’],
response.status_code))

If one of the URLs in your list throws an exception, it will be accessible from the exceptions () generator.

from requests_toolbelt.threaded import pool

urls = [
My list of URLs to get

p = pool.Pool.from_urls (urls)
p.Jjoin_all()

for exc in p.exceptions():

print (/GET {0}. Raised {1}.’.format (exc.request_kwargs|[’/url’],
exc.message))

If instead, you want to retry the exceptions that have been raised you can do the following:

from requests_toolbelt.threaded import pool

urls = [
My list of URLs to get

14 Chapter 2. Full Documentation

requests_toolbelt Documentation, Release 0.4.0

p = pool.Pool.from_urls (urls)
p.join_all()

new_pool = pool.Pool.from_exceptions (p.exceptions())
new_pool.join_all()

Not all requests are advisable to retry without checking if they should be retried. You would normally check if you
want to retry it.
The Pool object takes 4 other keyword arguments:
e initializer
This is a callback that will initialize things on every session created. The callback must return the session.
* auth_generator

This is a callback that is called after the initializer callback has modified the session. This callback must also
return the session.

® num_processes

By passing a positive integer that indicates how many threads to use. It is None by default, and will use the
result of multiproccessing.cpu_count ().

* session

You can pass an alternative constructor or any callable that returns a requests.Sesssion like object. It
will not be passed any arguments because a requests.Session does not accept any arguments.

class requests_toolbelt.threaded.pool.Pool (job_queue, initializer=None,
auth_generator=None, num_processes=None,

session=<class ‘requests.sessions.Session’>)
Pool that manages the threads containing sessions.

Parameters
* queue (queue.Queue) — The queue you're expected to use to which you should add items.
e initializer (collections.Callable) — Function used to initialize an instance of session.

» auth_generator (collections.Callable) — Function used to generate new auth credentials for
the session.

e num_threads (inf) — Number of threads to create.
* session (requests.Session) —

exceptions ()
Iterate over all the exceptions in the pool.

Returns Generator of ThreadException

classmethod from_exceptions (exceptions, **kwargs)
Create a Pool from an ThreadExceptions.

Provided an iterable that provides ThreadException objects, this classmethod will generate a new
pool to retry the requests that caused the exceptions.

Parameters
¢ exceptions (iterable) — Iterable that returns ThreadException

* kwargs — Keyword arguments passed to the Pool initializer.

2.6. Using requests with Threading 15

http://docs.python.org/library/collections.html#collections.Callable
http://docs.python.org/library/collections.html#collections.Callable
http://docs.python.org/library/functions.html#int

requests_toolbelt Documentation, Release 0.4.0

Returns An initialized Pool object.
Return type Pool

classmethod from_urls (urls, request_kwargs=None, **kwargs)
Create a Pool from an iterable of URLSs.

Parameters
e urls (iterable) — Iterable that returns URLSs with which we create a pool.

* request_kwargs (dict) — Dictionary of other keyword arguments to provide to the request
method.

» kwargs — Keyword arguments passed to the Pool initializer.
Returns An initialized Pool object.
Return type Pool

get_exception ()
Get an exception from the pool.

Return type ThreadException

get_response ()
Get a response from the pool.

Return type ThreadResponse

join_all()
Join all the threads to the master thread.

responses ()
Iterate over all the responses in the pool.

Returns Generator of ThreadResponse

class requests_toolbelt.threaded.pool.ThreadResponse (request_kwargs, response)
A wrapper around a requests Response object.

This will proxy most attribute access actions to the Response object. For example, if you wanted the parsed
JSON from the response, you might do:

thread_response = pool.get_response ()
json = thread_response. json ()

class requests_toolbelt.threaded.pool.ThreadException (request_kwargs, exception)
A wrapper around an exception raised during a request.

This will proxy most attribute access actions to the exception object. For example, if you wanted the message
from the exception, you might do:

thread_exc = pool.get_exception()
msg = thread_exc.message

2.7 Uploading Data

2.7.1 Streaming Multipart Data Encoder

Requests has support for multipart uploads, but the API means that using that functionality to build exactly the Multi-
part upload you want can be difficult or impossible. Additionally, when using Requests’ Multipart upload functionality

16 Chapter 2. Full Documentation

http://docs.python.org/library/stdtypes.html#dict
http://docs.python-requests.org/en/latest/user/quickstart/#post-a-multipart-encoded-file

requests_toolbelt Documentation, Release 0.4.0

all the data must be read into memory before being sent to the server. In extreme cases, this can make it impossible to
send a file as part of amultipart/form—data upload.

The toolbelt contains a class that allows you to build multipart request bodies in exactly the format you need, and to
avoid reading files into memory. An example of how to use it is like this:

import requests
from requests_toolbelt.multipart.encoder import MultipartEncoder

3
Il

MultipartEncoder (
fields={’'field0’: ’"value’, ’'fieldl’: ’'value’,
"field2’: (’'filename’, open(’file.py’, ’'rb’), ’'text/plain’)}

r = requests.post ('http://httpbin.org/post’, data=m,
headers={’Content-Type’ : m.content_type})

The MultipartEncoder hasthe .to_string () convenience method, as well. This method renders the multi-
part body into a string. This is useful when developing your code, allowing you to confirm that the multipart body has
the form you expect before you send it on.

The toolbelt also provides a way to monitor your streaming uploads with the MultipartEncoderMonitor.

class requests_toolbelt.multipart.encoder.MultipartEncoder (fields, boundary=None,
encoding="utf-8’)
The MultipartEncoder oject is a generic interface to the engine that will create a
multipart/form-data body for you.

The basic usage is:

import requests
from requests_toolbelt import MultipartEncoder

encoder = MultipartEncoder ({’ field’: ’"value’,
"other_field’, ’"other_value'’})
r = requests.post (’https://httpbin.org/post’, data=encoder,
headers={’Content-Type’: encoder.content_type})

If you do not need to take advantage of streaming the post body, you can also do:

r = requests.post ('https://httpbin.org/post’,
data=encoder.to_string(),
headers={’Content-Type’: encoder.content_type})

If you want the encoder to use a specific order, you can use an OrderedDict or more simply, a list of tuples:

encoder = MultipartEncoder ([('’ field’, ’'value’),
(" other_field’, ’'other_value’)])

Changed in version 0.4.0.
You can also provide tuples as part values as you would provide them to requests’ £iles parameter.

encoder = MultipartEncoder ({
"field’: ('file_name’, b’ {"a": "b"}’, ’application/json’,
{’X-My-Header’: 'my-value’})

2.7. Uploading Data 17

requests_toolbelt Documentation, Release 0.4.0

Warning: This object will end up directly in ht tplib. Currently, ht t plib has a hard-coded read size
of 8192 bytes. This means that it will loop until the file has been read and your upload could take a while.
This is not a bug in requests. A feature is being considered for this object to allow you, the user, to specify
what size should be returned on a read. If you have opinions on this, please weigh in on this issue.

2.7.2 Monitoring Your Streaming Multipart Upload

If you need to stream your multipart/form—data upload then you’re probably in the situation where it might
take a while to upload the content. In these cases, it might make sense to be able to monitor the progress of the
upload. For this reason, the toolbelt provides the MultipartEncoderMonitor. The monitor wraps an instance
of aMultipartEncoder and is used exactly like the encoder. It provides a similar API with some additions:

» The monitor accepts a function as a callback. The function is called every time requests calls read on the
monitor and passes in the monitor as an argument.

* The monitor tracks how many bytes have been read in the course of the upload.

You might use the monitor to create a progress bar for the upload. Here is an example using clint which displays the
progress bar.

To use the monitor you would follow a pattern like this:

import requests
from requests_toolbelt.multipart import encoder

def my_callback (monitor) :
Your callback function
pass

e = encoder.MultipartEncoder (
fields={’'field0’: ’"value’, ’'fieldl’: ’"value’,
"field2’: (’'filename’, open(’file.py’, 'rb’), ’'text/plain’)}
)

m = encoder.MultipartEncoderMonitor (e, my_callback)

r = requests.post ('http://httpbin.org/post’, data=m,
headers={’Content-Type’: m.content_type})

If you have a very simple use case you can also do:

import requests
from requests_toolbelt.multipart.encoder import MultipartEncoderMonitor

def my_callback (monitor) :
Your callback function
pass

m = MultipartEncoderMonitor.from_fields(
fields={’'field0’: ’"value’, ’'fieldl’: ’'value’,
"field2’: (’'filename’, open(’file.py’, 'rb’), ’'text/plain’)},
callback=my_callback
)

r = requests.post ('http://httpbin.org/post’, data=m,
headers={’Content-Type’: m.content_type})

18 Chapter 2. Full Documentation

http://docs.python.org/library/httplib.html#module-httplib
http://docs.python.org/library/httplib.html#module-httplib
https://github.com/sigmavirus24/requests-toolbelt/issues/75
https://gitlab.com/sigmavirus24/toolbelt/blob/master/examples/monitor/progress_bar.py

requests_toolbelt Documentation, Release 0.4.0

class requests_toolbelt.multipart.encoder.MultipartEncoderMonitor (encoder, call-

)) back=None)
An object used to monitor the progress of a MultipartEncoder.

The MultipartEncoder should only be responsible for preparing and streaming the data. For anyone who
wishes to monitor it, they shouldn’t be using that instance to manage that as well. Using this class, they can
monitor an encoder and register a callback. The callback receives the instance of the monitor.

To use this monitor, you construct your Mult ipartEncoder as you normally would.

from requests_toolbelt import (MultipartEncoder,
MultipartEncoderMonitor)
import requests

def callback (encoder, bytes_read):
Do something with this information

pass

m = MultipartEncoder (fields={’"field0’: "valuel’})
monitor = MultipartEncoderMonitor (m, callback)
headers = {’Content-Type’: montior.content_type}

r = requests.post (’https://httpbin.org/post’, data=monitor,
headers=headers)

Alternatively, if your use case is very simple, you can use the following pattern.

from requests_toolbelt import MultipartEncoderMonitor
import requests

def callback (encoder, bytes_read):
Do something with this information
pass

monitor = MultipartEncoderMonitor.from_fields (
fields={’field0’: ’"valueO’}, callback
)
headers = {’Content-Type’: montior.content_type}
r = requests.post ('https://httpbin.org/post’, data=monitor,
headers=headers)

2.7.3 Streaming Data from a Generator

There are cases where you, the user, have a generator of some large quantity of data and you already know the size of
that data. If you pass the generator to request s via the data parameter, requests will assume that you want to
upload the data in chunks and set a Transfer-Encoding header value of chunked. Often times, this causes the
server to behave poorly. If you want to avoid this, you can use the St reamingIterator. You pass it the size of
the data and the generator.

import requests
from requests_toolbelt.streaming iterator import StreamingIterator

generator = some_function () # Create your generator

size = some_function_size() # Get your generator’s size
content_type = content_type () # Get the content-type of the data
streamer = StreaminglIterator(size, generator)

r = requests.post ('https://httpbin.org/post’, data=streamer,
headers={’Content-Type’: content_type})

2.7. Uploading Data 19

requests_toolbelt Documentation, Release 0.4.0

The streamer will handle your generator for you and buffer the data before passing it to requests.
Changed in version 0.4.0: File-like objects can be passed instead of a generator.
If, for example, you need to upload data being piped into standard in, you might otherwise do:

import requests
import sys

r = requests.post (url, data=sys.stdin)

This would stream the data but would use a chunked transfer-encoding. If instead, you know the length of the
data that is being sent to stdin and you want to prevent the data from being uploaded in chunks, you can use
the StreamingIterator to stream the contents of the file without relying on chunking.

import requests
from requests_toolbelt.streaming iterator import StreamingIterator
import sys

stream = StreaminglIterator(size, sys.stdin)
r = requests.post (url, data=stream,
headers={’Content-Type’: content_type})

class requests_toolbelt.streaming_iterator.StreamingIterator (size, iterator,

encoding="utf-8’)

This class provides a way of allowing iterators with a known size to be streamed instead of chunked.

In requests, if you pass in an iterator it assumes you want to use chunked transfer-encoding to upload the data,

which not all servers support well. Additionally, you may want to set the content-length yourself to avoid this

but that will not work. The only way to preempt requests using a chunked transfer-encoding and forcing it to

stream the uploads is to mimic a very specific interace. Instead of having to know these details you can instead

just use this class. You simply provide the size and iterator and pass the instance of Streaminglterator to requests

via the data parameter like so:

from requests_toolbelt import StreamingIterator
import requests

Let iterator be some generator that you already have and size be
the size of the data produced by the iterator

r = requests.post (url, data=Streaminglterator(size, iterator))

You can also pass file-like objects to St reamingIterator in case requests can’t determize the filesize itself.
This is the case with streaming file objects like stdin or any sockets. Wrapping e.g. files that are on disk with
StreamingIterator is unnecessary, because requests can determine the filesize itself.

Naturally, you should also set the Content-Type of your upload appropriately because the toolbelt will not
attempt to guess that for you.

2.8 User-Agent Constructor

Having well-formed user-agent strings is important for the proper functioning of the web. Make server administators
happy by generating yourself a nice user-agent string, just like Requests does! The output of the user-agent generator
looks like this:

20 Chapter 2. Full Documentation

requests_toolbelt Documentation, Release 0.4.0

>>> import requests_toolbelt
>>> requests_toolbelt.user_agent ('mypackage’, 70.0.17)
"mypackage/0.0.1 CPython/2.7.5 Darwin/13.0.0’

The Python type and version, and the platform type and version, will accurately reflect the system that your program
is running on. You can drop this easily into your program like this:

from requests_toolbelt import user_agent
from requests import Session

s = Session ()
s.headers = {
"User—-Agent’: user_agent ('my_package’, "0.0.1")

}
r = s.get ("https://api.github.com/users’)

This will override the default Requests user-agent string for all of your HTTP requests, replacing it with your own.

2.8. User-Agent Constructor 21

requests_toolbelt Documentation, Release 0.4.0

22

Chapter 2. Full Documentation

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

23

requests_toolbelt Documentation, Release 0.4.0

24

Chapter 3. Indices and tables

Python Module Index

r

requests_toolbelt.exceptions, 13
requests_toolbelt.utils.deprecated, 11

25

requests_toolbelt Documentation, Release 0.4.0

26

Python Module Index

Index

A

add_strategy() (requests_toolbelt.auth.handler. AuthHandler MultipartEncoder

method), 10
AuthHandler (class in requests_toolbelt.auth.handler), 9

E

exceptions() (requests_toolbelt.threaded.pool.Pool
method), 15

F

FingerprintAdapter (class in
quests_toolbelt.adapters.fingerprint), 5

from_exceptions() (requests_toolbelt.threaded.pool.Pool
class method), 15

from_urls() (requests_toolbelt.threaded.pool.Pool class
method), 16

re-

G

M

(class in
quests_toolbelt.multipart.encoder), 17

MultipartEncoderMonitor (class in
quests_toolbelt.multipart.encoder), 18

Ie-

P

Pool (class in requests_toolbelt.threaded.pool), 15

R

remove_strategy() (requests_toolbelt.auth.handler. AuthHandler

method), 10
requests_toolbelt.exceptions (module), 13
requests_toolbelt.utils.deprecated (module), 11
responses() (requests_toolbelt.threaded.pool.Pool
method), 16

S

get_encodings_from_content() (in module re- SocketOptionsAdapter (class in re-

quests_toolbelt.utils.deprecated), 11 quests_toolbelt.adapters.socket_options),
get_exception() (requests_toolbelt.threaded.pool.Pool 7

method), 16 SourceAddressAdapter (class in re-
get_response() (requests_toolbelt.threaded.pool.Pool quests_toolbelt.adapters.source), 6

method), 16 SSLAdapter (class in requests_toolbelt.adapters.ssl), 6
get_strategy_for() (requests_toolbelt.auth.handler. AuthHandltieam_response_to_file() (in module re-

method), 10 quests_toolbelt.downloadutils.stream), 12
get_unicode_from_response() (in module re- StreamingError, 13

quests_toolbelt.utils.deprecated), 11 Streaminglterator (class in re-
GuessAuth (class in requests_toolbelt.auth.guess), 11 quests_toolbelt.streaming_iterator), 20
H T
HTTPProxyDigestAuth (class in re- TCPKeepAliveAdapter (class in re-

quests_toolbelt.auth.http_proxy_digest), quests_toolbelt.adapters.socket_options),

11 8

ThreadException (class in re-

J quests_toolbelt.threaded.pool), 16
join_all() (requests_toolbelt.threaded.pool.Pool method), ThreadResponse (class in re-

16

quests_toolbelt.threaded.pool), 16

27

	Overview
	requests toolbelt

	Full Documentation
	Transport Adapters
	Authentication
	Deprecated Requests Utilities
	Utilities for Downloading Streaming Reponses
	Custom Toolbelt Exceptions
	Using requests with Threading
	Uploading Data
	User-Agent Constructor

	Indices and tables
	Python Module Index

