

 Navigation

 	
 index

 	
 next |

 	requests_toolbelt 0.1.0 documentation

requests toolbelt

This is a collection of utilities that some users of python-requests might need
but do not belong in requests proper. The library is actively maintained by
members of the requests core development team, and so reflects the
functionality most requested by users of the requests library.

To get an overview of what the library contains, consult the user
documentation.

	User Guide
	Streaming Multipart Data Encoder

	User-Agent Constructor

	SSLAdapter

	GuessAuth

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Ian Cordasco, Cory Benfield.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	requests_toolbelt 0.1.0 documentation

User Guide

The requests-toolbelt contains a number of unrelated tools and utilities
for helping with use-cases that are not directly supported by the core
requests library. This section of the documentation contains descriptions
of the various utilities included in the toolbelt, and how to use them.

Streaming Multipart Data Encoder

Requests has support for multipart uploads [http://docs.python-requests.org/en/latest/user/quickstart/#post-a-multipart-encoded-file], but the API means that using
that functionality to build exactly the Multipart upload you want can be
difficult or impossible. Additionally, when using Requests’ Multipart upload
functionality all the data must be read into memory before being sent to the
server. In extreme cases, this can make it impossible to send a file as part of
a multipart/form-data upload.

The toolbelt contains a class that allows you to build multipart request bodies
in exactly the format you need, and to avoid reading files into memory. An
example of how to use it is like this:

from requests_toolbelt import MultipartEncoder
import requests

m = MultipartEncoder(
 fields={'field0': 'value', 'field1': 'value',
 'field2': ('filename', open('file.py', 'rb'), 'text/plain')}
)

r = requests.post('http://httpbin.org/post', data=m,
 headers={'Content-Type': m.content_type})

The MultipartEncoder has the .to_string() convenience method, as well.
This method renders the multipart body into a string. This is useful when
developing your code, allowing you to confirm that the multipart body has the
form you expect before you send it on.

The toolbelt also provides a way to monitor your streaming uploads with
the MultipartEncoderMonitor.

Monitoring Your Streaming Upload

If you need to stream your multipart/form-data upload then you’re probably
in the situation where it might take a while to upload the content. In these
cases, it might make sense to be able to monitor the progress of the upload.
For this reason, the toolbelt provides the MultipartEncoderMonitor. The
monitor wraps an instance of a MultipartEncoder and is used exactly like
the encoder. It provides a similar API with some additions:

	The monitor accepts a function as a callback. The function is called every
time requests calls read on the monitor and passes in the monitor as
an argument.

	The monitor tracks how many bytes have been read in the course of the
upload.

You might use the monitor to create a progress bar for the upload. Here is `an
example using clint`_ which displays the progress bar.

To use the monitor you would follow a pattern like this:

from requests_toolbelt import MultipartEncoder, MultipartEncoderMonitor
import requests

def my_callback(monitor):
 # Your callback function
 pass

e = MultipartEncoder(
 fields={'field0': 'value', 'field1': 'value',
 'field2': ('filename', open('file.py', 'rb'), 'text/plain')}
)
m = MultipartEncoderMonitor(e, my_callback)

r = requests.post('http://httpbin.org/post', data=m,
 headers={'Content-Type': m.content_type})

If you have a very simple use case you can also do:

from requests_toolbelt import MultipartEncoderMonitor
import requests

def my_callback(monitor):
 # Your callback function
 pass

m = MultipartEncoderMonitor.from_fields(
 fields={'field0': 'value', 'field1': 'value',
 'field2': ('filename', open('file.py', 'rb'), 'text/plain')},
 callback=my_callback
)

r = requests.post('http://httpbin.org/post', data=m,
 headers={'Content-Type': m.content_type})

User-Agent Constructor

Having well-formed user-agent strings is important for the proper functioning
of the web. Make server administators happy by generating yourself a nice
user-agent string, just like Requests does! The output of the user-agent
generator looks like this:

>>> import requests_toolbelt
>>> requests_toolbelt.user_agent('mypackage', '0.0.1')
'mypackage/0.0.1 CPython/2.7.5 Darwin/13.0.0'

The Python type and version, and the platform type and version, will accurately
reflect the system that your program is running on. You can drop this easily
into your program like this:

from requests_toolbelt import user_agent
from requests import Session

s = Session()
s.headers = {
 'User-Agent': user_agent('my_package', '0.0.1')
 }

r = s.get('https://api.github.com/users')

This will override the default Requests user-agent string for all of your HTTP
requests, replacing it with your own.

SSLAdapter

The SSLAdapter is the canonical implementation of the adapter proposed on
Cory Benfield’s blog, here [https://lukasa.co.uk/2013/01/Choosing_SSL_Version_In_Requests/]. This adapter allows the user to choose one of
the SSL/TLS protocols made available in Python’s ssl module for outgoing
HTTPS connections.

In principle, this shouldn’t be necessary: compliant SSL servers should be able
to negotiate the required SSL version. In practice there have been bugs in some
versions of OpenSSL that mean that this negotiation doesn’t go as planned. It
can be useful to be able to simply plug in a Transport Adapter that can paste
over the problem.

For example, suppose you’re having difficulty with the server that provides TLS
for GitHub. You can work around it by using the following code:

from requests_toolbelt import SSLAdapter

import requests
import ssl

s = requests.Session()
s.mount('https://github.com/', SSLAdapter(ssl.PROTOCOL_TLSv1))

Any future requests to GitHub made through that adapter will automatically
attempt to negotiate TLSv1, and hopefully will succeed.

GuessAuth

The GuessAuth auth type automatically detects whether to use basic auth or
digest auth:

from requests_toolbelt import GuessAuth

import requests

requests.get('http://httpbin.org/basic-auth/user/passwd',
 auth=GuessAuth('user', 'passwd'))
requests.get('http://httpbin.org/digest-auth/auth/user/passwd',
 auth=GuessAuth('user', 'passwd'))

This requires an additional request in case of basic auth, as usually basic
auth is sent preemptively.

 Copyright 2014, Ian Cordasco, Cory Benfield.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	requests_toolbelt 0.1.0 documentation

Index

 Copyright 2014, Ian Cordasco, Cory Benfield.
 Created using Sphinx 1.2.2.

 _static/plus.png

_static/comment-bright.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		requests_toolbelt 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Ian Cordasco, Cory Benfield.
 Created using Sphinx 1.2.2.

_static/up.png

_static/down-pressed.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment.png

